1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
use indexmap::IndexMap; use ast::{Directive, FromInputValue, InputValue, Selection}; use executor::Variables; use value::{DefaultScalarValue, Object, ScalarRefValue, ScalarValue, Value}; use executor::{ExecutionResult, Executor, Registry}; use parser::Spanning; use schema::meta::{Argument, MetaType}; /// GraphQL type kind /// /// The GraphQL specification defines a number of type kinds - the meta type /// of a type. #[derive(Clone, Eq, PartialEq, Debug, GraphQLEnumInternal)] #[graphql(name = "__TypeKind")] pub enum TypeKind { /// ## Scalar types /// /// Scalar types appear as the leaf nodes of GraphQL queries. Strings, /// numbers, and booleans are the built in types, and while it's possible /// to define your own, it's relatively uncommon. Scalar, /// ## Object types /// /// The most common type to be implemented by users. Objects have fields /// and can implement interfaces. Object, /// ## Interface types /// /// Interface types are used to represent overlapping fields between /// multiple types, and can be queried for their concrete type. Interface, /// ## Union types /// /// Unions are similar to interfaces but can not contain any fields on /// their own. Union, /// ## Enum types /// /// Like scalars, enum types appear as the leaf nodes of GraphQL queries. Enum, /// ## Input objects /// /// Represents complex values provided in queries _into_ the system. #[graphql(name = "INPUT_OBJECT")] InputObject, /// ## List types /// /// Represent lists of other types. This library provides implementations /// for vectors and slices, but other Rust types can be extended to serve /// as GraphQL lists. List, /// ## Non-null types /// /// In GraphQL, nullable types are the default. By putting a `!` after a /// type, it becomes non-nullable. #[graphql(name = "NON_NULL")] NonNull, } /// Field argument container #[derive(Debug)] pub struct Arguments<'a, S = DefaultScalarValue> { args: Option<IndexMap<&'a str, InputValue<S>>>, } impl<'a, S> Arguments<'a, S> where S: ScalarValue, { #[doc(hidden)] pub fn new( mut args: Option<IndexMap<&'a str, InputValue<S>>>, meta_args: &'a Option<Vec<Argument<S>>>, ) -> Self { if meta_args.is_some() && args.is_none() { args = Some(IndexMap::new()); } if let (&mut Some(ref mut args), &Some(ref meta_args)) = (&mut args, meta_args) { for arg in meta_args { if !args.contains_key(arg.name.as_str()) || args[arg.name.as_str()].is_null() { if let Some(ref default_value) = arg.default_value { args.insert(arg.name.as_str(), default_value.clone()); } else { args.insert(arg.name.as_str(), InputValue::null()); } } } } Arguments { args: args } } /// Get and convert an argument into the desired type. /// /// If the argument is found, or a default argument has been provided, /// the `InputValue` will be converted into the type `T`. /// /// Returns `Some` if the argument is present _and_ type conversion /// succeeeds. pub fn get<T>(&self, key: &str) -> Option<T> where T: FromInputValue<S>, for<'b> &'b S: ScalarRefValue<'b>, { match self.args { Some(ref args) => match args.get(key) { Some(v) => v.convert(), None => None, }, None => None, } } } /** Primary trait used to expose Rust types in a GraphQL schema All of the convenience macros ultimately expand into an implementation of this trait for the given type. The macros remove duplicated definitions of fields and arguments, and add type checks on all resolve functions automatically. This can all be done manually. `GraphQLType` provides _some_ convenience methods for you, in the form of optional trait methods. The `name` and `meta` methods are mandatory, but other than that, it depends on what type you're exposing: * Scalars, enums, lists and non null wrappers only require `resolve`, * Interfaces and objects require `resolve_field` _or_ `resolve` if you want to implement custom resolution logic (probably not), * Interfaces and unions require `resolve_into_type` and `concrete_type_name`. * Input objects do not require anything ## Example Manually deriving an object is straightforward but tedious. This is the equivalent of the `User` object as shown in the example in the documentation root: ```rust use juniper::{GraphQLType, Registry, FieldResult, Context, Arguments, Executor, ExecutionResult, DefaultScalarValue}; use juniper::meta::MetaType; # use std::collections::HashMap; #[derive(Debug)] struct User { id: String, name: String, friend_ids: Vec<String> } #[derive(Debug)] struct Database { users: HashMap<String, User> } impl Context for Database {} impl GraphQLType for User { type Context = Database; type TypeInfo = (); fn name(_: &()) -> Option<&'static str> { Some("User") } fn meta<'r>(_: &(), registry: &mut Registry<'r>) -> MetaType<'r> where DefaultScalarValue: 'r, { // First, we need to define all fields and their types on this type. // // If we need arguments, want to implement interfaces, or want to add // documentation strings, we can do it here. let fields = &[ registry.field::<&String>("id", &()), registry.field::<&String>("name", &()), registry.field::<Vec<&User>>("friends", &()), ]; registry.build_object_type::<User>(&(), fields).into_meta() } fn resolve_field( &self, info: &(), field_name: &str, args: &Arguments, executor: &Executor<Database> ) -> ExecutionResult { // Next, we need to match the queried field name. All arms of this // match statement return `ExecutionResult`, which makes it hard to // statically verify that the type you pass on to `executor.resolve*` // actually matches the one that you defined in `meta()` above. let database = executor.context(); match field_name { // Because scalars are defined with another `Context` associated // type, you must use resolve_with_ctx here to make the executor // perform automatic type conversion of its argument. "id" => executor.resolve_with_ctx(info, &self.id), "name" => executor.resolve_with_ctx(info, &self.name), // You pass a vector of User objects to `executor.resolve`, and it // will determine which fields of the sub-objects to actually // resolve based on the query. The executor instance keeps track // of its current position in the query. "friends" => executor.resolve(info, &self.friend_ids.iter() .filter_map(|id| database.users.get(id)) .collect::<Vec<_>>() ), // We can only reach this panic in two cases; either a mismatch // between the defined schema in `meta()` above, or a validation // in this library failed because of a bug. // // In either of those two cases, the only reasonable way out is // to panic the thread. _ => panic!("Field {} not found on type User", field_name), } } } ``` */ pub trait GraphQLType<S = DefaultScalarValue>: Sized where S: ScalarValue, for<'b> &'b S: ScalarRefValue<'b>, { /// The expected context type for this GraphQL type /// /// The context is threaded through query execution to all affected nodes, /// and can be used to hold common data, e.g. database connections or /// request session information. type Context; /// Type that may carry additional schema information /// /// This can be used to implement a schema that is partly dynamic, /// meaning that it can use information that is not known at compile time, /// for instance by reading it from a configuration file at start-up. type TypeInfo; /// The name of the GraphQL type to expose. /// /// This function will be called multiple times during schema construction. /// It must _not_ perform any calculation and _always_ return the same /// value. fn name(info: &Self::TypeInfo) -> Option<&str>; /// The meta type representing this GraphQL type. fn meta<'r>(info: &Self::TypeInfo, registry: &mut Registry<'r, S>) -> MetaType<'r, S> where S: 'r; /// Resolve the value of a single field on this type. /// /// The arguments object contain all specified arguments, with default /// values substituted for the ones not provided by the query. /// /// The executor can be used to drive selections into sub-objects. /// /// The default implementation panics. #[allow(unused_variables)] fn resolve_field( &self, info: &Self::TypeInfo, field_name: &str, arguments: &Arguments<S>, executor: &Executor<Self::Context, S>, ) -> ExecutionResult<S> { panic!("resolve_field must be implemented by object types"); } /// Resolve this interface or union into a concrete type /// /// Try to resolve the current type into the type name provided. If the /// type matches, pass the instance along to `executor.resolve`. /// /// The default implementation panics. #[allow(unused_variables)] fn resolve_into_type( &self, info: &Self::TypeInfo, type_name: &str, selection_set: Option<&[Selection<S>]>, executor: &Executor<Self::Context, S>, ) -> ExecutionResult<S> { if Self::name(info).unwrap() == type_name { Ok(self.resolve(info, selection_set, executor)) } else { panic!("resolve_into_type must be implemented by unions and interfaces"); } } /// Return the concrete type name for this instance/union. /// /// The default implementation panics. #[allow(unused_variables)] fn concrete_type_name(&self, context: &Self::Context, info: &Self::TypeInfo) -> String { panic!("concrete_type_name must be implemented by unions and interfaces"); } /// Resolve the provided selection set against the current object. /// /// For non-object types, the selection set will be `None` and the value /// of the object should simply be returned. /// /// For objects, all fields in the selection set should be resolved. /// /// The default implementation uses `resolve_field` to resolve all fields, /// including those through fragment expansion, for object types. For /// non-object types, this method panics. fn resolve( &self, info: &Self::TypeInfo, selection_set: Option<&[Selection<S>]>, executor: &Executor<Self::Context, S>, ) -> Value<S> { if let Some(selection_set) = selection_set { let mut result = Object::with_capacity(selection_set.len()); if resolve_selection_set_into(self, info, selection_set, executor, &mut result) { Value::Object(result) } else { Value::null() } } else { panic!("resolve() must be implemented by non-object output types"); } } } pub(crate) fn resolve_selection_set_into<T, CtxT, S>( instance: &T, info: &T::TypeInfo, selection_set: &[Selection<S>], executor: &Executor<CtxT, S>, result: &mut Object<S>, ) -> bool where T: GraphQLType<S, Context = CtxT>, S: ScalarValue, for<'b> &'b S: ScalarRefValue<'b>, { let meta_type = executor .schema() .concrete_type_by_name( T::name(info) .expect("Resolving named type's selection set") .as_ref(), ).expect("Type not found in schema"); for selection in selection_set { match *selection { Selection::Field(Spanning { item: ref f, start: ref start_pos, .. }) => { if is_excluded(&f.directives, executor.variables()) { continue; } let response_name = f.alias.as_ref().unwrap_or(&f.name).item; if f.name.item == "__typename" { result.add_field( response_name, Value::scalar(instance.concrete_type_name(executor.context(), info)), ); continue; } let meta_field = meta_type.field_by_name(f.name.item).unwrap_or_else(|| { panic!(format!( "Field {} not found on type {:?}", f.name.item, meta_type.name() )) }); let exec_vars = executor.variables(); let sub_exec = executor.field_sub_executor( response_name, f.name.item, start_pos.clone(), f.selection_set.as_ref().map(|v| &v[..]), ); let field_result = instance.resolve_field( info, f.name.item, &Arguments::new( f.arguments.as_ref().map(|m| { m.item .iter() .map(|&(ref k, ref v)| { (k.item, v.item.clone().into_const(exec_vars)) }).collect() }), &meta_field.arguments, ), &sub_exec, ); match field_result { Ok(Value::Null) if meta_field.field_type.is_non_null() => return false, Ok(v) => merge_key_into(result, response_name, v), Err(e) => { sub_exec.push_error_at(e, start_pos.clone()); if meta_field.field_type.is_non_null() { return false; } result.add_field(response_name, Value::null()); } } } Selection::FragmentSpread(Spanning { item: ref spread, .. }) => { if is_excluded(&spread.directives, executor.variables()) { continue; } let fragment = &executor .fragment_by_name(spread.name.item) .expect("Fragment could not be found"); if !resolve_selection_set_into( instance, info, &fragment.selection_set[..], executor, result, ) { return false; } } Selection::InlineFragment(Spanning { item: ref fragment, start: ref start_pos, .. }) => { if is_excluded(&fragment.directives, executor.variables()) { continue; } let sub_exec = executor.type_sub_executor( fragment.type_condition.as_ref().map(|c| c.item), Some(&fragment.selection_set[..]), ); if let Some(ref type_condition) = fragment.type_condition { let sub_result = instance.resolve_into_type( info, type_condition.item, Some(&fragment.selection_set[..]), &sub_exec, ); if let Ok(Value::Object(object)) = sub_result { for (k, v) in object { merge_key_into(result, &k, v); } } else if let Err(e) = sub_result { sub_exec.push_error_at(e, start_pos.clone()); } } else { if !resolve_selection_set_into( instance, info, &fragment.selection_set[..], &sub_exec, result, ) { return false; } } } } } true } fn is_excluded<S>(directives: &Option<Vec<Spanning<Directive<S>>>>, vars: &Variables<S>) -> bool where S: ScalarValue, for<'b> &'b S: ScalarRefValue<'b>, { if let Some(ref directives) = *directives { for &Spanning { item: ref directive, .. } in directives { let condition: bool = directive .arguments .iter() .flat_map(|m| m.item.get("if")) .flat_map(|v| v.item.clone().into_const(vars).convert()) .next() .unwrap(); if (directive.name.item == "skip" && condition) || (directive.name.item == "include" && !condition) { return true; } } } false } fn merge_key_into<S>(result: &mut Object<S>, response_name: &str, value: Value<S>) { if let Some(&mut (_, ref mut e)) = result .iter_mut() .find(|&&mut (ref key, _)| key == response_name) { match *e { Value::Object(ref mut dest_obj) => { if let Value::Object(src_obj) = value { merge_maps(dest_obj, src_obj); } } Value::List(ref mut dest_list) => { if let Value::List(src_list) = value { dest_list .iter_mut() .zip(src_list.into_iter()) .for_each(|(d, s)| match d { &mut Value::Object(ref mut d_obj) => { if let Value::Object(s_obj) = s { merge_maps(d_obj, s_obj); } } _ => {} }); } } _ => {} } return; } result.add_field(response_name, value); } fn merge_maps<S>(dest: &mut Object<S>, src: Object<S>) { for (key, value) in src { if dest.contains_field(&key) { merge_key_into(dest, &key, value); } else { dest.add_field(key, value); } } }